- Biologia (do grego βιος - bios = vida e λογος - logos = estudo, ou seja, o estudo da vida) é a ciência que estuda os seres vivos. Debruça-se sobre o funcionamento dinâmico dos organismos desde uma escala molecular
subcelular até o nível populacional e interacional, tanto
intraespecíficamente quanto interespecíficamente, bem como a interação
da vida com seu ambiente físico-químico. O estudo destas dinâmicas ao longo do tempo é chamado, de forma geral, de biologia evolutiva e contempla o estudo da origem das espécies e populações, bem como das unidades hereditárias mendelianas, os genes.
A biologia abrange um espectro amplo de áreas acadêmicas frequentemente
consideradas disciplinas independentes, mas que, no seu conjunto,
estudam a vida nas mais variadas escalas.
No que se refere às células, os blocos com que são construídos os organismos, a vida é estudada pela biologia celular, pela biologia molecular, pela bioquímica e pela genética molecular e, à escala multicelular, pela fisiologia, pela anatomia e pela histologia.1 A biologia do desenvolvimento estuda a vida ao nível do desenvolvimento ou ontogenia do organismo individual.
Índice
- 1 História
- 2 Ramos
- 2.1 Universalidade: bioquímica, células e o código genético
- 2.2 Evolução: o princípio central da biologia
- 2.3 Diversidade: a variedade dos organismos vivos
- 2.4 Homeostase: adaptação à mudança
- 2.5 Interacção: grupos e ambientes
- 2.6 Evolução: o princípio central da biologia
- 2.7 Diversidade: a variedade dos organismos vivos
- 2.8 Homeostase: adaptação à mudança
- 2.9 Interacção: grupos e ambientes
- 3 Âmbito
- 4 Notas
- 5 Referências
- 6 Bibliografia
- 7 Ver também
História
Ver artigo principal: Biólogos famosos e História da biologiaFormado por combinação do grego βίος (bios), que significa vida, e λόγος (logos), que significa palavra, ideia, a palavra biologia no seu sentido moderno parece ter sido introduzida independentemente por Gottfried Reinhold Treviranus (Biologie oder Philosophie der lebenden Natur, 18022 ) e por Jean-Baptiste Lamarck (Hydrogéologie, 1802). A palavra propriamente dita pode ter sido cunhada em 1800 por Karl Friedrich Burdach, mas aparece no título do Volume 3 da obra de Michael Christoph Hanov Philosophiae naturalis sive physicae dogmaticae: Geologia, biologia, phytologia generalis et dendrologia, publicada em 1766.
Ramos
A biologia é dividida em vários ramos. São eles:
- Zoologia
- Botânica
- Microbiologia
- Citologia ou Biologia Celular
- Genética
- Biologia Molecular
- Sistemática
- Biologia Evolutiva
- Fisiologia
- Ecologia
- Biologia de Sistemas
- Biologia da Conservação
- Bioética
- Biologia do Desenvolvimento
- Histologia
- Etologia
- Imunologia
- Biotecnologia
- Paleontologia
- Etnobiologia
== Princípios
Universalidade: bioquímica, células e o código genético
Ver artigo principal: VidaExistem muitas unidades universais e processos comuns que são fundamentais para todas as formas de vida. Por exemplo, quase todas as formas de vida são constituídas por células que, por sua vez, funcionam segundo uma bioquímica comum baseada no carbono. A exceção a essa regra são os vírus e os príons,3 que não são compostos por células. Os primeiros assumem uma forma cristalizada inativa e só se reproduzem com o aparelho nuclear das células alvo. Os príons, por sua vez, são proteínas auto replicantes-infectantes, que causam, por exemplo, a encefalopatia bovina espongiforme (ou "mal da vaca louca" ).
Todos os organismos transmitem a sua hereditariedade através de material genético baseado em ácidos nucleicos, podendo ser ou DNA (Ácido desoxirribonucléico) ou RNA (Ácido ribonucléico), usando um código genético universal.4 Durante o desenvolvimento o tema dos processos universais está também presente: por exemplo, na maioria dos organismos metazoários, os passos básicos do desenvolvimento inicial do embrião partilham estágios morfológicos semelhantes e envolvem genes similares.
Evolução: o princípio central da biologia
Ver artigo principal: EvoluçãoUm dos conceitos nucleares e estruturantes em biologia é de que a vida mudou e tem mudado, desde que surgiu no planeta, e de que os seres vivos possuem ancestrais e descendência comum. De fato, é uma das razões pelas quais os organismos biológicos exibem a notável similaridade de unidades e processos discutida na seção anterior. Charles Darwin estabeleceu a evolução como uma teoria viável ao enunciar a sua força motriz: a seleção natural. (Alfred Russel Wallace é comumente reconhecido como co-autor deste conceito).5 A deriva genética foi admitida como um mecanismo adicional na chamada síntese moderna. A história evolutiva duma espécie, que descreve as várias espécies de que aquela descende e as características destas, juntamente com a sua relação com outras espécies vivas, constituem a sua filogenia.6 A elaboração duma filogenia recorre às mais variadas abordagens, desde a comparação de genes no âmbito da biologia molecular7 8 ou da genómica9 até comparação de fósseis e outros vestígios de organismos antigos pela paleontologia.10 Nota 1 As relações evolutivas são analisadas e organizadas mediante vários métodos, nomeadamente a filogenia, a fenética e a cladística.11 Os principais eventos na evolução da vida, tal como os biólogos os vêem, podem ser resumidos nesta cronologia evolutiva.
Diversidade: a variedade dos organismos vivos
Tradicionalmente, os seres vivos são divididos em cinco reinos:
Contudo, vários autores consideram este sistema desactualizado. Abordagens mais modernas começam geralmente com o sistema dos três domínios:
Estes domínios são definidos com base em diferenças a nível celular, como a presença ou ausência de núcleo e a estrutura da membrana exterior. Existe ainda toda uma série de parasitas intracelulares considerados progressivamente menos “vivos” em termos da sua actividade metabólica:
Homeostase: adaptação à mudança
Ver artigo principal: HomeostaseA homeostaseNota 2 é a propriedade de um sistema aberto de regular o seu ambiente interno de modo a manter uma condição estável mediante múltiplos ajustes de um equilíbrio dinâmico controlados pela interação de mecanismos de regulação.13 Todos os organismos, unicelulares e multicelulares, exibem homeostase. A homeostase pode-se manifestar ao nível da célula, na manutenção duma acidez (pH) interna estável, do organismo, na temperatura interna constante dos animais de sangue quente, e mesmo do ecossistema, no maior consumo de dióxido de carbono atmosférico devido a um maior crescimento da vegetação provocado pelo aumento do teor de dióxido de carbono na atmosfera. Tecidos e órgãos também mantêm homeostase.
Interacção: grupos e ambientes
Todo o ser vivo interage com outros organismos e com o seu ambiente. Uma das razões pelas quais os sistemas biológicos são tão difíceis de estudar é precisamente a possibilidade de tantas interacções diferentes com outros organismos e com o ambiente. Uma bactéria microscópica reagindo a um gradiente local de açúcar está a reagir ao seu ambiente exactamente da mesma forma que um leão está a reagir ao seu quando procura alimento na savana africana, ou um avestruz protege seu ninho comunal na África.14 Dentro duma mesma espécie ou entre espécies, os comportamentos podem ser cooperativos, agressivos, parasíticos ou simbióticos. A questão torna-se mais complexa à medida que um número crescente de espécies interage num ecossistema. Este é o principal objecto de estudo da ecologia.
Evolução: o princípio central da biologia
Ver artigo principal: EvoluçãoUm dos conceitos nucleares e estruturantes em biologia é de que a vida mudou e tem mudado, desde que surgiu no planeta, e de que os seres vivos possuem ancestrais e descendência comum. De fato, é uma das razões pelas quais os organismos biológicos exibem a notável similaridade de unidades e processos discutida na seção anterior. Charles Darwin estabeleceu a evolução como uma teoria viável ao enunciar a sua força motriz: a seleção natural. (Alfred Russel Wallace é comumente reconhecido como co-autor deste conceito).5 A deriva genética foi admitida como um mecanismo adicional na chamada síntese moderna. A história evolutiva duma espécie, que descreve as várias espécies de que aquela descende e as características destas, juntamente com a sua relação com outras espécies vivas, constituem a sua filogenia.15 A elaboração duma filogenia recorre às mais variadas abordagens, desde a comparação de genes no âmbito da biologia molecular7 8 ou da genómica16 até comparação de fósseis e outros vestígios de organismos antigos pela paleontologia.17 Nota 3 As relações evolutivas são analisadas e organizadas mediante vários métodos, nomeadamente a filogenia, a fenética e a cladística.11 Os principais eventos na evolução da vida, tal como os biólogos os vêem, podem ser resumidos nesta cronologia evolutiva.
Diversidade: a variedade dos organismos vivos
Tradicionalmente, os seres vivos são divididos em cinco reinos:
Contudo, vários autores consideram este sistema desactualizado. Abordagens mais modernas começam geralmente com o sistema dos três domínios:
Estes domínios são definidos com base em diferenças a nível celular, como a presença ou ausência de núcleo e a estrutura da membrana exterior. Existe ainda toda uma série de parasitas intracelulares considerados progressivamente menos “vivos” em termos da sua actividade metabólica:
Homeostase: adaptação à mudança
Ver artigo principal: HomeostaseA homeostaseNota 4 é a propriedade de um sistema aberto de regular o seu ambiente interno de modo a manter uma condição estável mediante múltiplos ajustes de um equilíbrio dinâmico controlados pela interação de mecanismos de regulação.13 Todos os organismos, unicelulares e multicelulares, exibem homeostase. A homeostase pode-se manifestar ao nível da célula, na manutenção duma acidez (pH) interna estável, do organismo, na temperatura interna constante dos animais de sangue quente, e mesmo do ecossistema, no maior consumo de dióxido de carbono atmosférico devido a um maior crescimento da vegetação provocado pelo aumento do teor de dióxido de carbono na atmosfera. Tecidos e órgãos também mantêm homeostase.
Interacção: grupos e ambientes
Todo o ser vivo interage com outros organismos e com o seu ambiente. Uma das razões pelas quais os sistemas biológicos são tão difíceis de estudar é precisamente a possibilidade de tantas interacções diferentes com outros organismos e com o ambiente. Uma bactéria microscópica reagindo a um gradiente local de açúcar está a reagir ao seu ambiente exactamente da mesma forma que um leão está a reagir ao seu quando procura alimento na savana africana, ou um avestruz protege seu ninho comunal na África.14 Dentro duma mesma espécie ou entre espécies, os comportamentos podem ser cooperativos, agressivos, parasíticos ou simbióticos. A questão torna-se mais complexa à medida que um número crescente de espécies interage num ecossistema. Este é o principal objecto de estudo da ecologia.
Âmbito
Ver página: Disciplinas da biologiaA biologia tornou-se um campo de investigação tão vasto que geralmente não é estudada como uma única disciplina, mas antes dividida em várias disciplinas subordinadas. Consideramos aqui quatro grandes agrupamentos. O primeiro consiste nas disciplinas que estudam as estruturas básicas dos sistemas vivos: células, genes, etc.; um segundo agrupamento aborda o funcionamento destas estruturas ao nível dos tecidos, órgãos e corpos; um terceiro incide sobre os organismos e o seu ciclo de vida; um último agrupamento de disciplinas foca-se nas interacções. Note-se, contudo, que estas descrições, estes agrupamentos e as fronteiras entre estes são apenas uma descrição simplificada do todo que é a investigação biológica. Na realidade, as fronteiras entre disciplinas são muito fluidas e a maioria das disciplinas recorre frequentemente a técnica doutras disciplinas. Por exemplo, a biologia evolutiva5 18 apoia-se fortemente em técnicas da biologia molecular para determinar sequências de DNA que ajudam a perceber a variação genética dentro duma população; e a fisiologia recorre com frequência à biologia celular na descrição do funcionamento dos sistemas de órgãos.
Estrutura da vida
A biologia celular estuda as propriedades fisiológicas das células, bem como o seu comportamento, interacções e ambiente, tanto ao nível microscópico como molecular. Ocupa-se tanto de organismos unicelulares como as bactérias, como de células especializadas em organismos multicelulares como as dos humanos.19 20
Compreender a composição e o funcionamento das células é essencial para todas as ciências biológicas. Avaliar as semelhanças e as diferenças entre os diferentes tipos de células é particularmente importante para estas duas disciplinas, e é a partir destas semelhanças e diferenças fundamentais que emerge um padrão unificador que permite que os princípios deduzidos a partir dum tipo de célula sejam extrapolados e generalizados para outros tipos de célula.
A genética é a ciência dos genes, da hereditariedade e da variação entre organismos. Na investigação moderna, providencia ferramentas importantes para o estudo da função dum gene particular e para a análise de interacções genéticas. Nos organismos, a informação genética normalmente está nos cromossomas, mais concretamente, na estrutura química de cada uma das moléculas de DNA.
Os genes codificam a informação necessária para a síntese de proteínas que, por sua vez, desempenham um papel essencial, se bem que longe de absoluto, na determinação do fenótipo do organismo.
A biologia do desenvolvimento estuda o processo pelo qual os organismos crescem e se desenvolvem. Confinada originalmente à embriologia,21 22 nos nossos dias estuda o controle genético do crescimento e diferenciação celular e da morfogénese, o processo que dá origem aos tecidos, órgãos e à anatomia em geral. Entre as espécies privilegiadas nestes estudos encontram-se o nemátode Caenorhabditis elegans, a mosca-do-azeite Drosophila melanogaster,23 o peixe-zebra24 Brachydanio rerio ou Danio rerio, o camundongo Mus musculus, e a erva Arabidopsis thaliana.
Fisiologia dos organismos
Ver artigo principal: Fisiologia e AnatomiaA fisiologia estuda os processos mecânicos, físicos e bioquímicos dos organismos vivos, tentando compreender como as várias estruturas funcionam como um todo. É tradicionalmente dividida em fisiologia vegetal e fisiologia animal, mas os princípios da fisiologia são universais, independentemente do organismo estudado. Por exemplo, informação acerca da fisiologia duma célula de levedura também se aplica a células humanas, e o mesmo conjunto de técnicas e métodos é aplicado à fisiologia humana ou à de outras espécies, animais e vegetais.
A anatomia é uma parte importante da fisiologia e estuda a forma como funcionam e interagem os vários sistemas dum organismo, como, por exemplo, os sistemas nervoso, imunitário, endócrino, respiratório e circulatório. O estudo destes sistemas é partilhado com disciplinas da medicina como a neurologia, a imunologia e afins.
Diversidade e evolução dos organismos
As duas grandes disciplinas da taxonomia são a botânica e a zoologia. A botânica ocupa-se do estudo das plantas e abrange um vasto leque de disciplinas que estudam o seu crescimento, reprodução, metabolismo, desenvolvimento, doenças e evolução. A zoologia ocupa-se do estudo dos animais, incluindo aspectos como a sua fisiologia, anatomia e embriologia. Tanto a botânica como a zoologia se dividem em disciplinas menores especializadas em grupos particulares de animais e plantas. A taxonomia inclui outras disciplinas que se ocupam doutros organismos além das plantas e dos animais, como, por exemplo, a micologia, que estuda os fungos. Os mecanismos genéticos e de desenvolvimento partilhados por todos os organismos são estudados pela biologia molecular, pela genética molecular e pela biologia do desenvolvimento.
Classificação da vida
O sistema de classificação dominante é conhecido como taxonomia lineana, que inclui conceitos como a estruturação em níveis e a nomenclatura binomial. A atribuição de nomes científicos a organismos é regulada por acordos internacionais como o Código Internacional de Nomenclatura Botânica (ICBN), o Código Internacional de Nomenclatura Zoológica (ICZN), e o Código Internacional de Nomenclatura Bacteriana (ICNB). Um esboço dum código único foi publicado em 1997 numa tentativa de uniformizar a nomenclatura nas três áreas, mas que parece não ter sido ainda adoptado formalmente. O Código Internacional de Classificação e Nomenclatura de Vírus (ICVCN) não foi incluído neste esforço de uniformização.
Interações entre organismos
A ecologia estuda a distribuição e a abundância dos organismos vivos, e as interações dos organismos entre si e com o seu ambiente.14 O ambiente de um organismo inclui não só o seu habitat, que pode ser descrito como a soma dos fatores abióticos locais tais como o clima e a geologia, mas também pelos outros organismos com quem partilha o seu habitat. Os sistemas ecológicos são estudados a diferentes níveis, do individual e populacional ao do ecossistema e da biosfera. A ecologia é uma ciência multidisciplinar, recorrendo a vários outros domínios científicos.
A etologia estuda o comportamento animal (com particular ênfase nos animais sociais como os primatas e os canídeos) e é por vezes considerada um ramo da zoologia. Uma preocupação particular dos etólogos prende-se com a evolução do comportamento e a sua compreensão em termos da teoria da seleção natural. De certo modo, o primeiro etólogo moderno foi Charles Darwin, cujo livro The expression of the emotions in animals and menNota 5 influenciou muitos etólogos.
Notas
- É possível que o termo "paleontologia" tenha sido cunhado por Johann Fischer von Waldheim (em Gould, Stephen Jay. Dinosaur in a Haystack (em inglês). New York: Harmony Books, 1995. 480 p. p. 261. ISBN 0-517-70393-9)
- Este termo foi introduzido pelo fisiologista Walter Bradford Cannon em seu livro The Wisdom of the Body de 1932 (em Sperelakis, Nicholas (editor); Freedman, Jeffrey C. (autor do capítulo); Ferguson, Donald G. (autor do capítulo). Cell Physiology Sourcebook: A Molecular Approach (em inglês). 3ª ed. San Diego, California: Academic Press. Capítulo: 1:Biophysical Chemistry of Physiological Solutions. , 1235 p. p. 3. ISBN 0-12-656977-0)
- É possível que o termo "paleontologia" tenha sido cunhado por Johann Fischer von Waldheim (em Gould, Stephen Jay. Dinosaur in a Haystack (em inglês). New York: Harmony Books, 1995. 480 p. p. 261. ISBN 0-517-70393-9)
- Este termo foi introduzido pelo fisiologista Walter Bradford Cannon em seu livro The Wisdom of the Body de 1932 (em Sperelakis, Nicholas (editor); Freedman, Jeffrey C. (autor do capítulo); Ferguson, Donald G. (autor do capítulo). Cell Physiology Sourcebook: A Molecular Approach (em inglês). 3ª ed. San Diego, California: Academic Press. Capítulo: 1:Biophysical Chemistry of Physiological Solutions. , 1235 p. p. 3. ISBN 0-12-656977-0)
- Este livro seria apenas um capítulo do livro "A Descendência do Homem e Seleção em Relação ao Sexo", mas Darwin após organizar as anotações, percebeu necessitar de um tratado separado (em Darwin, Charles. Autobiografia: 1809-1882. Rio de Janeiro: Contraponto, 2000. 127 p. p. 114. ISBN 85-85910-35-6)
- Panno, Joseph. The Cell: Evolution of the First Organism (em inglês). New York: Facts on File, 2005. 186 p. p. 130-133. ISBN 0-8160-4946-7
- Treviranus, Gottfried Reinhold. Biologie: Oder Philosophie Der Lebenden Natur Für Naturforscher Und Aerzte (em alemão). [S.l.]: Nabu Press, 2011. 510 p. 6 vol. vol. 1. ISBN 1-24539149-6
- Holzenburg, Andreas (editor); Bogner, Elke (editor); Bellon, Anne (autor de capítulo); Vey, Martin (autor de capítulo). Structure-Function Relationships of Human Pathogenic Virus (em inglês). New York: Kluwer Academic/Plenum Publishers, 2002. Capítulo: 5.1:Prions. , 528 p. p. 255-285. ISBN 0-306-46768-2
- Stansfield, William D.; Colomé, Jaime S.; Cano, Raúl J. Molecular and Cell Biology (em inglês). New York: McGraw-Hill. 122 p. p. 24. ISBN 0-07-139881-3
- Futuyma, Douglas J. Evolutionary Biology (em inglês). 2ª ed. Sunderland, Massachusetts: Sinauer. 600 p. p. 374. ISBN 0-87893-188-0
- Ridley, Mark. The Problems of Evolution (em inglês). New York/Oxford: Oxford University Press, 1985. Capítulo: 6: Principles of Classification. , 159 p. p. 73-88. ISBN 0-19-219194-2
- Nei, Masatoshi; Kumar, Sudhir. Molecular Evolution and Phylogenetics (em inglês). Oxford: Oxford University Press, 2000. p. 1-113. ISBN 0-19-513585-7
E.V.P (EDUCAÇÃO VISUAL E PLÁSTICA) INTRODUÇÃO A educação é um processo que permite que uma pessoa assimile e aprenda conhecimentos. As novas gerações conseguem adquirir os modos de ser das gerações anteriores, sendo assim produzida uma consciencialização cultural e comportamental. Com a educação, o sujeito adquire habilidades e valores. A arte, por sua vez, é o conjunto de criações humanas que expressam uma visão/perspectiva sensível sobre o mundo, podendo ser real ou imaginária. Os artistas recorrem aos recursos plásticos, sonoros ou linguísticos para exprimir as suas emoções, sensações e ideias. A educação plástica (ou trabalhos manuais), a educação musical e educação visual e tecnológica são algumas das disciplinas que formam a educação artística, uma cadeira que não costuma receber grande atenção nos programas escolares. E.V.P (EDUCAÇÃO VISUAL E PLÁSTICA) A noção de arte evolui ao longo do tempo; posto isto, a educação artística d...
Comentários
Enviar um comentário
Faça aqui o seu comentário